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Chapter 2. Special Relativity 
 

Notes: 
• Some material presented in this chapter is taken “The Feynman Lectures on 

Physics, Vol. I” by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, 
Addison-Wesley). 

2.1 The Ether and the Michelson-Morley Experiment 
As we saw at the end of Chapter 1, the prediction and experimental verification of the 
propagation of electromagnetic waves in space led physicists to the conclusion that there 
should exist a medium, the ether, permeating all of space on which these waves travelled. 
Of course, the wave equation we derived from Maxwell’s equations (see equation (1.24) 
in Chapter 1) does not at all require that. It does, in fact, imply that such waves could 
propagate in vacuum.  But this notion of wave propagation without a medium was so 
counterintuitive to physicists at the time that they elected to postulate the existence of the 
ether.  On the other hand, this hypothesis had the advantage of being testable through 
experiments. 
 
This is exactly what American physicists Albert Michelson (1852-1931) and Edward 
Morley (1838-1923) sought out to do in a famous experiment (i.e., the Michelson-
Morley experiment) in 1887. To do so they used an apparatus (now called a Michelson 
interferometer) as shown in the schematic of Figure 1. In a nutshell, the experiment 
consists of sending a light signal (from Source A in the figure) and splitting it over two 
mutually orthogonal paths (at the plate B), each propagating through a distance L  to a 
mirror (mirrors C and E in the up-down and left-right directions, respectively) where they 
are reflected back and recombined (“below” the plate B).  
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Fig. 15-2. Schematic diagram of the Michelson-Morley experiment.

The plate B splits an oncoming beam of light, and the two resulting beams
continue in mutually perpendicular directions to the mirrors, where they are
reflected back to B. On arriving back at B, the two beams are recombined as
two superposed beams, D and F . If the time taken for the light to go from B
to E and back is the same as the time from B to C and back, the emerging
beams D and F will be in phase and will reinforce each other, but if the two
times di�er slightly, the beams will be slightly out of phase and interference will
result. If the apparatus is “at rest” in the ether, the times should be precisely
equal, but if it is moving toward the right with a velocity u, there should be a
di�erence in the times. Let us see why.

First, let us calculate the time required for the light to go from B to E and
back. Let us say that the time for light to go from plate B to mirror E is t1,
and the time for the return is t2. Now, while the light is on its way from B
to the mirror, the apparatus moves a distance ut1, so the light must traverse a
distance L + ut1, at the speed c. We can also express this distance as ct1, so we
have

ct1 = L + ut1, or t1 = L/(c ≠ u).

(This result is also obvious from the point of view that the velocity of light relative
to the apparatus is c ≠ u, so the time is the length L divided by c ≠ u.) In a like
manner, the time t2 can be calculated. During this time the plate B advances a
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Figure 1 - Schematic diagram of the Michelson-
Morley experiment (from The Feynman Lectures 
on Physics, Vol. I). 
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Michelson and Morley surmised that if the earth is moving relative to the ether at a speed 
u  in the B-E direction, for example, then the electromagnetic wave from the light source 
travelling along that direction should make its round trip from plate B to mirror E and 
back to plate B in a different amount of time than the wave propagating along the B-C-B 
path. More precisely, since the apparatus is moving in the B-E direction the 
corresponding velocity of the light wave relative to the interferometer should be 
(according the Newtonian mechanics) equal to c − u .  It follows that the time needed for 
the light wave to go from B to E is 
 

 t1 =
L

c − u
.   (2.1) 

 
Once the wave reflects on mirror E, its velocity relative to the apparatus becomes equal to 
c + u  and the time needed to travel from E to B is  
 

 t2 =
L

c + u
.  (2.2) 

 
We then find that the time necessary for the round trip is 
 

 
tE = t1 + t2

= 2L c
1− u2 c2( ) .

  (2.3) 

 
For the light wave going from plate B to mirror C and back the speed relative to the 
interferometer is simply c , since its velocity is perpendicular to that of the apparatus. The 
distance the light goes through when going from B to C is given by 
 

 d3 = ut3( )2 + L2 ,   (2.4) 
 
where t3  is the time needed for the wave to travel that distance.  But since we also have 
t3 = d3 c , we can write   
 
 ct3( )2 = ut3( )2 + L2,   (2.5) 
   
or 
 

 t3 =
L c

1− u2 c2
.   (2.6) 

  
It follows that the round trip B-C-B is  
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 tC =
2L c
1− u2 c2

.   (2.7) 

 
According to the ether hypothesis, the time difference between the two paths should have 
been 
 

 

Δt = tC − tE

= 2L c
1− u2 c2

1−1 1− u2 c2( )
≠ 0.

  (2.8) 

 
This non-zero time difference Δt  predicted that Michelson and Morley would observe 
that, when recombined, the two light waves should not be in phase with each other. That 
is, if when they left the plate B at the initial time t0  the waves had the same amplitude 
 
 E t0( ) = Acos φ0( ),   (2.9) 
 
then, when recombined, the total amplitude of the signal should had been 
 

 

ET t( ) = Acos ωtC +φ0( ) + Acos ωtE +φ0( )
= A cos ωtC +φ0( ) + cos ωtC −ωΔt +φ0( )⎡⎣ ⎤⎦

= 2Acos ωΔt
2

⎛
⎝⎜

⎞
⎠⎟ cos ωtC +φ0 −

ωΔt
2

⎛
⎝⎜

⎞
⎠⎟ ,

  (2.10) 

 
where we used the identity cos θ1( )cos θ2( ) = cos θ1 −θ2( ) + cos θ1 +θ2( )⎡⎣ ⎤⎦ 2 .  
 
However, the signal Michelson and Morley detected corresponded to  
 
 ET t( ) = 2Acos ωtC +φ0( ),   (2.11) 
 
which implied that Δt = 0 !  In other words, the time taken by the light waves to travel 
their respective paths was the same, just as if the speed of light was the same in both 
orientations.  This result was directly at odds with the idea that electromagnetic waves 
propagated on the hypothetical ether.  
 
It interesting to note the observation of Lorentz who suggested that the result could be 
explained if bodies (like the B-E leg of the Michelson interferometer) contracted 
according to 
 
 LE = L 1− u2 c2 ,   (2.12) 
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in the direction of their velocity u .  It could indeed verified from equation (2.8) that 
Δt = 0  in that case even with the existence of the hypothetical ether.  Although this 
suggestion was too artificial to be satisfying to physicists at the time, we will soon see 
that it incorporated part of the solution to the problem exposed by the Michelson-Morley 
experiment. 

2.2   The Invariance of Maxwell’s Equations 
Let us now revisit the earlier statement made in Section 1.2.2 of Chapter 1 that 
Maxwell’s equations were not invariant under a Galilean transformation. More precisely, 
let us start with the wave equation we derived from Maxwell’s equations in Chapter 1 
(i.e., equation (1.24)) 
 

 
∂2Ez

∂x2
− 1
c2

∂2Ez

∂t 2
= 0   (2.13) 

 
and let us see how it transforms when going to a reference frame moving at a relative 
speed u  in the positive x-direction  such that 
 

 

′t = t
′x = x − ut
′y = y
′z = z.

  (2.14) 

 
We now use the chain rule to write    
 

 

∂
∂x

= ∂ ′x
∂x

∂
∂ ′x

+ ∂ ′t
∂x

∂
∂ ′t

= ∂
∂ ′x

∂2

∂x2
= ∂2

∂ ′x 2

  (2.15) 

 
and 
 

 

∂
∂t

= ∂ ′t
∂t

∂
∂ ′t

+ ∂ ′x
∂t

∂
∂ ′x

= ∂
∂ ′t

− u ∂
∂ ′x

∂2

∂t 2
= ∂

∂ ′t
− u ∂

∂ ′x
⎛
⎝⎜

⎞
⎠⎟

∂
∂ ′t

− u ∂
∂ ′x

⎛
⎝⎜

⎞
⎠⎟

= ∂2

∂ ′t 2
− 2u ∂2

∂ ′x ∂ ′t
+ u2 ∂2

∂ ′x 2 .

  (2.16) 
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Inserting the last of equations (2.15) and (2.16) into equation (2.13) yields1 
 

 1− u
2

c2
⎛
⎝⎜

⎞
⎠⎟
∂2Ez

∂ ′x 2 − 1
c2

∂2Ez

∂ ′t 2
+ 2u
c2

∂2Ez

∂ ′x ∂ ′t
= 0.  (2.17) 

 
Because physicists believed then, as we still do now, that the laws of physics should be 
the same in any and all inertial frames, it follows that the fact that equation (2.17) does 
not “look” the same as equation (2.13) was a major problem. By “looking” the same we 
mean that if we replace x  and t  with ′x  and ′t  in equation (2.13) we do not recover 
equation (2.17), and vice-versa. Indeed, we can see that the two equations are similar 
only when  u≪ c . 
 
It was once again Lorentz who pointed out a fact that would eventually be central to 
resolving this problem. More precisely, he discovered that if one instead used the 
following coordinate transformation between the two inertial frames 
 

 

′t = t − xu c2

1− u2 c2

′x = x − ut
1− u2 c2

′y = y
′z = z,

  (2.18) 

 
then Maxwell’s equations, and equation (2.13), are invariant (i.e., look the same) when 
going from one to the other (or any other) inertial frames. The transformation given by 
equations (2.18) is the so-called Lorentz transformation, which Fitzgerald had previously 
and independently derived.  We can also see that we recover the Galilean transformation 
of equations (2.14) when  u≪ c , implying that the Lorentz transformation may be more 
general in scope and application.   
 
Physicists had two sets of laws that appeared to work extremely well in predicting the 
outcome of experiments: Newton’s Laws and Maxwell’s equations. But to make things 
even more confusing, the first set of laws were invariant under a Galilean transformation 
but not under a Lorentz transformation, while the opposite was true for the second set of 
equations… Because of the success and long standing status of Newton’s Laws, many 
physicists believed that something had to be wrong with Maxwell’s equations. 

2.3  Einstein and Special Relativity 

                                                
1 In the transformation of equation (2.17) we should also account for the corresponding 
transformation of the electric field components. But we will neglect this for the purpose 
of the present discussion.  



 - 23 - 

In one of his groundbreaking papers of 1905 Einstein showed that Newton’s Laws only 
applied in non-relativistic situations, i.e., when  u≪ c , and needed to be corrected 
otherwise.  He based his analysis on two fundamental postulates: 
 

I. The laws of Physics are the same in all inertial frames. This is the principle of 
relativity. 

II. The speed of light in the vacuum is the same in all inertial frames, irrespective of 
the velocity of the source responsible for the corresponding radiation. 

 
To reach his conclusions, Einstein considered two inertial frames in uniform relative 
motion, at the speed u , along the x-direction , as displayed in Figure 2. One main results 
was that the Lorentz transformation of equations (2.18) is the correct relationship 
between the coordinates of the two inertial frames, not the Galilean transformation. The 
constancy of the speed of light can easily be verified by considering the distance travelled 
by a ray of light emitted at an arbitrary direction at ′t = 0  in Moe’s frame 

′x 2 + ′y 2 + ′z 2 = c ′t , which we can rewrite as 
 
 c2 ′t 2 − ′x 2 − ′y 2 − ′z 2 = 0.  (2.19) 
 
Let us now insert equations (2.18) into (2.19), with γ = 1− u2 c2( )−1 2 ≥1 ,  
 

 

c2 ′t 2 − ′x 2 − ′y 2 − ′z 2 = c2γ 2 t − xu c2( )2 −γ 2 x − ut( )2 − y2 − z2

= γ 2 t 2 c2 − u2( )− x2 1− u2 c2( )− 2tx u − u( )⎡⎣ ⎤⎦ − y
2 − z2

= γ 2 γ −2 c2t 2 − x2( )⎡⎣ ⎤⎦ − y
2 − z2

= c2t 2 − x2 − y2 − z2

= 0,

  (2.20) 

      
and we thus verify that the Lorentz transformation ensures the constancy of the speed of 

so small, it seems remarkable that it was discovered theoretically before it was
discovered experimentally. Empirically, at a su�ciently high velocity, the e�ect
is very large, but it was not discovered that way. Therefore it is interesting to see
how a law that involved so delicate a modification (at the time when it was first
discovered) was brought to light by a combination of experiments and physical
reasoning. Contributions to the discovery were made by a number of people, the
final result of whose work was Einstein’s discovery.

There are really two Einstein theories of relativity. This chapter is concerned
with the Special Theory of Relativity, which dates from 1905. In 1915 Einstein
published an additional theory, called the General Theory of Relativity. This
latter theory deals with the extension of the Special Theory to the case of the
law of gravitation; we shall not discuss the General Theory here.

The principle of relativity was first stated by Newton, in one of his corollaries
to the laws of motion: “The motions of bodies included in a given space are
the same among themselves, whether that space is at rest or moves uniformly
forward in a straight line.” This means, for example, that if a space ship is drifting
along at a uniform speed, all experiments performed in the space ship and all the
phenomena in the space ship will appear the same as if the ship were not moving,
provided, of course, that one does not look outside. That is the meaning of the
principle of relativity. This is a simple enough idea, and the only question is
whether it is true that in all experiments performed inside a moving system the
laws of physics will appear the same as they would if the system were standing
still. Let us first investigate whether Newton’s laws appear the same in the
moving system.

Suppose that Moe is moving in the x-direction with a uniform velocity u, and
he measures the position of a certain point, shown in Fig. 15-1. He designates
the “x-distance” of the point in his coordinate system as xÕ. Joe is at rest, and

y y 0

x x 0

ut

JOE MOE (x 0, y 0, z 0)
P or

(x, y , z)
u

Fig. 15-1. Two coordinate systems in uniform relative motion along
their x-axes.

15-2

Figure 2 – Two inertial frames. The primed 
coordinate system (i.e., Moe’s) is moving with a 
velocity  relative to the unprimed system (i.e., 
Joe’s) in the  (from The Feynman 
Lectures on Physics, Vol. I).  
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light in the two inertial frames.  A simplified derivation of the Lorentz transformation 
will be provided in the Appendix at the end of the chapter, but Einstein also showed, and 
as can be seen in equations (2.20), the quantity c2t 2 − x2 + y2 + z2( )  is not only invariant 
for light, but also for any other system or conditions. That is, invariance also holds when 
c2t 2 − x2 + y2 + z2( ) ≠ 0 . 
 
We also note that the first postulate implies that Maxwell’s equations are good laws of 
physics since they are invariant to the Lorentz transformation (therefore Newton’s Laws 
are not). We now look at a few of the important implications stemming from Einstein’s 
theory of Special Relativity and the Lorentz transformation. 

2.3.1 Time Dilation and Length Contraction 
Let us consider a time interval Δt = t2 − t1  measured with a clock at rest in Joe’s inertial 
frame of Figure 2 (i.e., the unprimed coordinates), and inquire about the corresponding 
time interval Δ ′t = ′t2 − ′t1  as measured by a similar clock at rest in Moe’s reference frame 
(the primed coordinates). Using the Lorentz transformation we write 
 

 

′t2 − ′t1 = γ t2 − x2 u c2( )−γ t1 − x1u c2( )
= γ t2 − t1( )− x2 − x1( )u c2⎡⎣ ⎤⎦
= γ t2 − t1( ),

  (2.21) 

 
since x1 = x2  because the clock is at rest in Joe’s frame. We therefore find that 
 

 
Δ ′t = Δt

1− u2 c2

> Δt.

  (2.22) 

 
It thus appears that the clock at rest in Joe’s frame runs slower than the clock at rest in 
Moe’s frame (according to Moe)!  Let us now proceed in the opposite way.  But to 
calculate Δt  as a function of Δ ′t  we must first determine the “inverse” of the Lorentz 
transformation given in equations (2.18).  This is easily done, as we only need to change 
the sign of the relative velocity. That is, if Moe’s is moving at the velocity u  relative to 
Joe, then Joe moves at −u  relative to Moe. The corresponding Lorentz transform is 
therefore 
 

 

t = γ ′t + ′x u c2( )
x = γ ′x + u ′t( )
y = ′y
z = ′z .

  (2.23) 
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We can now calculate 
 

 

t2 − t1 = γ ′t2 + ′x2 u c2( )−γ ′t1 + ′x1u c2( )
= γ ′t2 − ′t1( ) + ′x2 − ′x1( )u c2⎡⎣ ⎤⎦
= γ ′t2 − ′t1( ),

  (2.24) 

 
with the last step resulting from the fact that ′x1 = ′x2  for the clock at rest in Moe’s frame. 
We are then left with  
 

 
Δt = Δ ′t

1− u2 c2

> Δ ′t .

  (2.25) 

 
How could this be?  That is, how can the clock at rest relative to Joe appears to be 
running slower according to Moe (from equation (2.22)), while the clock at rest relative 
to Moe also appears to run slower (not faster) relative to Joe (from equation (2.25))?  The 
answer is that, according to the principle of relativity, we should not have been expecting 
anything else.  More precisely, a clock at rest in an inertial frame moving at some 
uniform velocity relative to another inertial frame will always appear to run slower 
according to observers at rest in the latter. That is, moving clocks run slower… 
 
Let us now consider the ends of a rod of length L0 = x2 − x1  laying along the x-axis  in 
Joe’s frame, and inquire about its length ′L = ′x2 − ′x1  as measured by Moe. We therefore 
write 
 

 

x2 − x1 = γ ′x2 + u ′t2( )−γ ′x1 + u ′t1( )
= γ ′x2 − ′x1( ) + u ′t2 − ′t1( )⎡⎣ ⎤⎦
= γ ′x2 − ′x1( ),

  (2.26) 

 
since to measure the length of the rod in his frame Moe must measure the position of its 
ends at the same time ′t1 = ′t2  according to his clock.  We thus find that 
 

 ′L = L0 1− u
2 c2

≤ L0.
  (2.27) 

   
We therefore recover the result anticipated by Lorentz that moving rods appear to 
contract (i.e., Joe would also measure a rod at rest relative to Moe to be shorter…). This 
apparently peculiar result is just a consequence of the fact that, in special relativity, 
events that are simultaneous (i.e., happen at the same time) in one reference frame will 
not be in another (if the two frames are moving relative to one another). The concept of 
simultaneity must be abandoned in special relativity.  
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2.3.2 Addition of Velocities 
It is straightforward to extend the Lorentz transformation given in equations (2.23) to 
infinitesimal quantities the dt , dx , etc., with  
 

 

dt = γ d ′t + d ′x u c2( )
dx = γ d ′x + ud ′t( )
dy = d ′y
dz = d ′z .

  (2.28) 

 
We can now inquire of the velocity of a particle moving at a velocity ′v  relative to 
Moe’s inertial frame, as seen by Joe. We thus consider the following 
 

 

vx =
dx
dt

=
γ d ′x + ud ′t( )

γ d ′t + d ′x u c2( )
= u + ′vx
1+ ′vxu c2

vy =
dy
dt

= d ′y
γ d ′t + d ′x u c2( )

=
′vy

γ 1+ ′vxu c2( )
vz =

dz
dt

= d ′z
γ d ′t + d ′x u c2( )

= ′vz
γ 1+ ′vxu c2( ) .

  (2.29) 

 
Although these relation are more complicated than the simple addition of velocity law 
obtained with the Galilean transformation in Newtonian physics, we do recover the same 
relations when  u, ′v ≪ c  (i.e., in the non-relativistic case). It is also straightforward to 
show that 
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′vx =
vx − u

1− vxu c2

′vy =
vy

γ 1− vxu c2( )
′vz =

vz
γ 1− vxu c2( ) .

  (2.30) 

 
It is also clear from equations (2.29) and (2.30) that speed of the particle cannot exceed 
the speed of light in any inertial frame. 

2.3.3 Relativistic Kinematics 
Let us consider a simple example where Moe, in the primed inertial frame, holds up a ball 
that he measures to have a mass m1  (when at rest in that frame), and drops it on a similar 
ball, let us call it m2 , at rest in Joe’s inertial frame (the unprimed frame). The situation is 
still as shown in Figure 2 with Moe’s frame moving at the uniform velocity u  in the ′x -  
(and x- ) direction. At the moment when the two balls are about to be aligned vertically, 
Moe throws his ball m1  downward at a vertical speed ′v1y  (measured in Moe’s frame) 
such that it elastically strikes Joe’s m2  ball head-on. After the collision, m1  comes to a 
stop (as seen in Moe’s frame) while m2  starts moving downwards at a speed v2y  as 
measured in Joe’s frame. We know from Newtonian mechanics that such a case of 
complete transfer of linear momentum from one mass to another during an elastic 
collision happens when the colliding partners have the same mass, i.e., m1 = m2 .  Let us 
now inquire whether Newton’s definition of linear momentum, i.e., p = mv , applies to 
relativistic motions.  
 
Although we know from equations (2.29) and (2.30) that Moe and Joe will not agree on 
the speeds of the two balls, they will however agree that before the collision m1  is 
moving vertically and m2  is not while the opposite is true after the collision. And they 
should therefore also agree on the fact that linear momentum should be conserved in the 
process. In Joe’s frame the equality of the before- and after-collision momenta is written 
as 
 

 m1

′v1y
γ u

= m2v2y   (2.31) 

 
or  
 
 m1 ′v1y = m2γ uv2y ,   (2.32) 
 
where we used equations (2.29) ( ′v1x = 0  ) with γ u = 1− u2 c2( )−1 2 . In Moe’s frame we 
have 
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 m1 ′v1y = m2

v2y
γ u

,   (2.33) 

  
from equations (2.30) since v2x = 0 . Equating equations (2.32) and (2.33) we are faced 
with the impossibility  
 

 m2γ uv2y = m2

v2y
γ u

,   (2.34) 

 
which is clearly erroneous.  We note that the mass m2  on the left-hand side is that 
obtained from Joe’s measurement in the unprimed inertial frame, while the one on the 
right-hand side is from Moe’s frame. The only conclusion we can draw from this is that, 
if the conservation of momentum is to hold, then, the measured mass is not the same the 
two inertial frames!   
 
Let us further calculate the following for the speed of m1  as seen by Joe 
 

 
v1
2 = u2 +

′v1y
2

γ u
2

= u2 + γ u
−2 ′v1

2,
  (2.35) 

 
since ′v1 = ′v1y  in Moe’s frame (i.e., ′v1x = 0 ), and therefore 
 

 

γ v1
−2 = 1− v1

2

c2

= 1− u
2

c2
−γ u

−2 ′v1
2

c2

= γ u
−2 1− ′v1

2

c2
⎛
⎝⎜

⎞
⎠⎟

  (2.36) 

 
or 
 
 γ v1

= γ ′v1
γ u .   (2.37) 

 
We also find through a similar exercise that2 
 
                                                
2 Note that equations (2.37) and (2.38) are not valid in general but only apply to the 
problem at hand. More general considerations show that γ v1

= γ ′v1
γ u 1+ u ⋅ ′v1 c

2( )  and 

γ ′v2
= γ v2

γ u 1− u ⋅v2 c2( ) , respectively.  
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 γ ′v2
= γ v2

γ u .   (2.38) 
   
Since both masses are assumed to be the same when measured in their rest frame, we 
write m1 = m2 = m0 , and attempt a new definition for the linear momentum 
 
 p = γ vm0v.  (2.39) 
 
Coming back to problem, we now have for the conservation of (vertical) linear 
momentum in Joe’s frame 
 

 γ v1
m0

′v1y
γ u

= γ v2
m0v2y ,   (2.40) 

  
or with equation (2.37) 
 
 γ ′v1

m0 ′v1y = γ v2
m0v2y .   (2.41) 

 
Likewise, in Moe’s frame we have 
 

 γ ′v1
m0 ′v1y = γ ′v2

m0

v2y
γ u

,   (2.42) 

 
or from equation (2.38) 
 
 γ ′v1

m0 ′v1y = γ v2
m0v2y .   (2.43) 

 
The fact that equations (2.41) and (2.43) are the same shows that the new definition for 
the linear momentum (i.e., equation (2.39)) ensures that Joe and Moe agree on its 
conservation in a consistent manner, as expected.  Incidentally, we note that equation 
(2.43) also implies that ′v1y = v2y , which we could have intuitively deduced. Equation 
(2.39) is the correct definition for the linear momentum.      
 
It is often the case that the special relativistic linear momentum is written in a way similar 
to the Newtonian form as 
 
 p = mv,   (2.44) 
 
with the relativistic mass given by 
 

 
m = γ vm0

= m0

1− v2 c2
.   (2.45) 
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A distinction is then made with the rest mass m0 , which is the same for all inertial 
frames (i.e., it is the mass when the corresponding object is not moving relative to the 
observer). We therefore see that the relativistic mass increases as it gains speed, since 
γ v >1  when v > 0 .  
 
What about the energy of the particle? Here we use the same definition as in Newtonian 
physics while retaining equation (2.39) (or (2.44) and (2.45)) for the linear momentum. 
That is, the force acting on a particle is still given by 
 

 

F = dp
dt

=
d γ vm0v( )

dt

= m0
d γ vv( )
dt

,

  (2.46) 

 
while it acquires the following kinetic energy when acted upon by the force starting from 
rest at x = 0  to some final position xf   
 
 K = F ⋅dx

0

xf∫ .   (2.47) 

  
Inserting equation (2.46) into equation (2.47) yields 
 

 

K = m0
d γ vv( )
dt0

xf∫ ⋅dx

= m0 v ⋅d γ vv( )
0

γ vv( )f∫
= m0 vd γ vv( )

0

γ vv( )f∫ ,

  (2.48) 

 
since dx = vdt  and where at xf  the particle has acquired the final linear momentum per 
unit mass pf m0 = γ vv( )f . To solve this integral we first calculate 
 

 

d γ vv( )
dv

= d
dv

v
1− v2 c2

⎛

⎝
⎜

⎞

⎠
⎟

= 1
1− v2 c2

+ v2 c2

1− v2 c2( )3 2

= 1
1− v2 c2( )3 2

,

  (2.49) 
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which we then insert in equation (2.48) to get 
 

 

K = m0
vdv

1− v2 c2( )3 20

vf∫

= m0
c2

1− v2 c2
0

vf

= m0c
2 γ vf

−1( ).

  (2.50) 

 
This equation for the relativistic kinetic energy is obviously different than the Newtonian 
version. However, in the limit when  vf ≪ c  we have 
 

 

 

γ vf
= 1

1− vf
2 c2

! 1+ 1
2
vf
2

c2
,

  (2.51) 

  
and therefore 
 

 
 
lim
vf≪c

K = 1
2
m0vf

2 .  (2.52) 

 
We thus recover the Newtonian result in the non-relativistic limit.  
 
The final form of equation (2.50) led Einstein to suggest that the total energy of the 
particle is given by 
 

 
E = m0c

2 + K
= γ vm0c

2,
  (2.53) 

 
where we have dropped the ‘f’ subscript for convenience. This implies that a particle at 
rest, i.e., with K = 0 , has a latent rest energy  
 
 E0 = m0c

2.   (2.54) 
 
This rest energy is extremely large for a non-relativistic particle since we can verify that 

 K E0 = v
2 2c2 ≪1 when  v≪ c , and its existence will have very important ramifications 

when discussing nuclear physics later on. When using equation (2.45), the energy 
equation can also be written as what is perhaps the most famous equation in all of physics 
 
 E = mc2,   (2.55) 
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stating the equivalence between mass and energy.   
 
Finally, we note that we can combine the energy and momentum as follows 
 

 
E2 − p2c2 = γ v

2m0
2c4 −γ v

2m0
2v2c2

= γ v
2m0

2c4 1− v2 c2( )   (2.56) 

 
or, using γ v

−2 = 1− v2 c2 ,  
 
 E2 = m0

2c4 + p2c2.  (2.57) 

Appendix – The Lorentz Transformation 
We can provide a mathematical derivation of the Lorentz transformation for the system 
shown in Figure 2 as follows. Because of the homogeneity of space-time, we will assume 
that the different coordinates of the two frames are linked by a set of linear relations. For 
example, we write 
 

 
c ′t = Act + Bx +Cy + Dz
′x = Ect + Fx +Gy + Hz,

 (2.58) 

  
and similar equations for ′y  and ′z . However, since the two inertial frames exhibit a 
relative motion only along the x-axis , we will further assume that the directions 
perpendicular to the direction of motion are the same for both systems with 
 

 
′y = y
′z = z.

 (2.59) 

 
Furthermore, because we consider that these perpendicular directions should be 
unchanged by the relative motion, and that at low velocity (i.e., when  u≪ c ) we must 
have  
 
 ′x = x − ut,  (2.60) 
 
we will also assume that the transformations do not “mix” the parallel and perpendicular 
components. That is, we set C = D = G = H = 0  and simplify equations (2.58) to 
 
  

 
c ′t = Act + Bx
′x = Ect + Fx.

 (2.61) 

 
Therefore, we only need to solve for the relationship between c ′t , ′x( )  and ct, x( ) . To do 
so, we first consider a particle at rest at the origin of Joe’s referential such that x = 0  and 
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its velocity as seen by an observer at rest in Moe’s frame is −u . Using equations (2.61) 
we find that 
 

 ′x
c ′t

= − u
c
= E
A
.  (2.62) 

 
Second, we consider a particle at rest at the origin of Moe’s referential such that now 
′x = 0  and its velocity as seen by Joe is u . This time we find from the last of equations 

(2.61) that 
 

 x
ct

= u
c
= − E

F
,  (2.63) 

 
and the combination of equations (2.62) and (2.63) shows that A = F ; we rewrite 
equations (2.61) as 
 

 
c ′t = A ct + B

A
x⎛

⎝⎜
⎞
⎠⎟

′x = A x − u
c
ct⎛

⎝⎜
⎞
⎠⎟ .

 (2.64) 

 
Third, we note that from Postulate II the propagation of a light pulse must happen at the 
speed of light in both inertial frames. We then set c ′t = ′x  and ct = x  in equations (2.64) 
to find that  
 

 B
A
= − u

c
,  (2.65) 

 
and 
 

 
c ′t = A ct − u

c
x⎛

⎝⎜
⎞
⎠⎟

′x = A x − u
c
ct⎛

⎝⎜
⎞
⎠⎟ .

 (2.66) 

 
Evidently, we could have instead proceeded by first expressing the unprimed coordinates 
as a function of the primed coordinates 
 

 
ct = ′A c ′t + ′B ′x
x = ′E c ′t + ′F ′x ,

 (2.67) 

 
from which, going through the same process as above, we would have found that 
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ct = ′A c ′t + u

c
′x⎛

⎝⎜
⎞
⎠⎟

x = ′A ′x + u
c
c ′t⎛

⎝⎜
⎞
⎠⎟ .

 (2.68) 

 
Not surprisingly, equations (2.68) are similar in form to equations (2.66) with u  replaced 
by −u . The first postulate of special relativity tells us, however, that the laws of physics 
must be independent of the inertial frame. This implies that 
 
 A = ′A  (2.69) 
 
(this result is verified by inserting equations (2.66) and (2.68) into c2 ′t 2 − ′x 2 = c2t 2 − x2  , 
as this will yield A2 = ′A 2 ). If we insert equations (2.68) into equations (2.66) we find 
that  
 

 A = 1− u
c

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

−1 2

.  (2.70) 

 
We can finally write the Lorentz transformation, in its usual form for the problem at 
hand, as 
  

 

c ′t = γ u ct − βx( )
′x = γ u x − βct( )
′y = y
′z = z,

 (2.71) 

 
with  
 

 

β = u
c

β = β

γ u = 1− β 2( )−1 2 .
 (2.72) 

  
The inverse transformation is easily found by swapping the two sets of coordinates, and 
by changing the sign of the velocity. We then get 
 

 

ct = γ u c ′t + β ′x( )
x1 = γ u ′x + βc ′t( )
y = ′y
z = ′z .

 (2.73) 


